High Power Spark Delivery System Using Hollow Core Kagome Lattice Fibers
نویسندگان
چکیده
This study examines the use of the recently developed hollow core kagome lattice fibers for delivery of high power laser pulses. Compared to other photonic crystal fibers (PCFs), the hollow core kagome fibers have larger core diameter (~50 µm), which allows for higher energy coupling in the fiber while also maintaining high beam quality at the output (M² = 1.25). We have conducted a study of the maximum deliverable energy versus laser pulse duration using a Nd:YAG laser at 1064 nm. Pulse energies as high as 30 mJ were transmitted for 30 ns pulse durations. This represents, to our knowledge; the highest laser pulse energy delivered using PCFs. Two fiber damage mechanisms were identified as damage at the fiber input and damage within the bulk of the fiber. Finally, we have demonstrated fiber delivered laser ignition on a single-cylinder gasoline direct injection engine.
منابع مشابه
Hollow-core photonic crystal fibre for high power laser beam delivery
We review the use of hollow-core photonic crystal fibre (HC-PCF) for high power laser beam delivery. A comparison of bandgap HC-PCF with Kagome-lattice HC-PCF on the geometry, guidance mechanism, and optical properties shows that the Kagome-type HC-PCF is an ideal host for high power laser beam transportation because of its large core size, low attenuation, broadband transmission, single-mode g...
متن کاملMillijoule laser pulse delivery for spark ignition through kagome hollow-core fiber.
We report on power handling oriented design of kagome lattice hollow-core fiber and demonstrate through it for the first time nanosecond laser pulses induced spark ignition in a friendly manner. Two different core designs and transmission bands are investigated and evaluated. The energy threshold damage was measured to be in excess of the 10 mJ level and the output power density is approaching ...
متن کاملDynamic control of higher-order modes in hollow-core photonic crystal fibers.
We present a versatile method for selective mode coupling into higher-order modes of photonic crystal fibers, using holograms electronically generated by a spatial light modulator. The method enables non-mechanical and completely repeatable changes in the coupling conditions. We have excited higher order modes up to LP(31) in hollow-core photonic crystal fibers. The reproducibility of the coupl...
متن کاملUse of hollow core fibers, fiber lasers, and photonic crystal fibers for spark delivery and laser ignition in gases.
The fiber-optic delivery of sparks in gases is challenging as the output beam must be refocused to high intensity (approximately 200 GW/cm(2) for nanosecond pulses). Analysis suggests the use of coated hollow core fibers, fiber lasers, and photonic crystal fibers (PCFs). We study the effects of launch conditions and bending for 2 m long coated hollow fibers and find an optimum launch f# of appr...
متن کاملSilica hollow core microstructured fibers for beam delivery in industrial and medical applications
The focus of this review is recent work to develop microstructured hollow core fibers for two applications where the flexible delivery of a single mode beam is desired. Also, a brief review of other fiber based solutions is included. High power, short-pulsed lasers arewidely used formicro-machining, providing highprecision andhigh quality. However, the lack of truly flexible beam delivery syste...
متن کامل